Bの物理の現状と展望

後藤 亨 (KEK)

Introduction

近年の В 物理の実験 ⇒ 豊富なデータ

e⁺e[−] B ファクトリー実験: B^{±,0}

▷ Belle @KEKB (KEK, 1999-2010) ~711 fb⁻¹ @ Υ (4S) * ~772M $B\overline{B}$ pairs.

- ▷ BaBar @PEP-II (SLAC, 1999-2008) ~ 433 fb⁻¹ @ $\Upsilon(4S)$
- ⇒ Belle II @SuperKEKB (KEK, 2017?-) * $\mathcal{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (KEKBの40倍) → 7 ab⁻¹/100days.
- ハドロンコライダー実験: B^{±,0}, B_s, 他のbハドロン
 - ▷ CDF & D0@TeVatron (FNAL, RUN2: 2001-2011) \sim 12 fb⁻¹ @1.96TeV $p\bar{p}$ per exp.
 - ▷ LHCb @LHC (CERN, 2010-2012) \sim 1.2 fb⁻¹ @7TeV + 1.5 fb⁻¹ @8TeV pp
 - ⇒ 2015: 13TeVで再開

Introduction

目的・動機 = 標準模型を越える新物理の探索。

• 測定結果は標準模型とどれくらい合うか?

以下、

- Unitarity Triangle
- $b \rightarrow s \, \ell^+ \, \ell^-$, $b \rightarrow s \, \gamma$
- $b \rightarrow c \& b \rightarrow u$ semileptonic decays

を紹介。

Unitarity Triangle

標準模型では、(クォーク)フレイバー混合と CP の破れは Cabibbo-Kobayashi-Maskawa 行列で記述される。

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} . \qquad d_{Lj} \xrightarrow{(V_{\mathsf{CKM}})_{ij}} u_{Li}$$

• 4パラメータのユニタリ行列: 混合角3個、複素位相1個。

▷
$$|V_{us}|$$
: $K \to \pi \ell \nu$ 等 $s \to u$
 $|V_{us}| = 0.2253 \pm 0.0008$ [PDG2014]
▷ $|V_{cb}|$: $b \to c \ell \nu$
 $|V_{cb}| = (41.1 \pm 1.3) \times 10^{-3}$ [PDG2014]
2個は精度がよい (ただし $|V_{cb}|$ は後で再考)。
 $b \to V_{cb}$

Unitarity Triangle

ユニタリ性: $V_{ud}^*V_{ub} + V_{cd}^*V_{cb} + V_{td}^*V_{tb} = 0$ を複素平面上の三角形で表す ($b \leftrightarrow d$ unitarity triangle)。

Rephasing invariant な量 $\overline{\rho}$ 、 $\overline{\eta}$ を定義。

$$\overline{\rho} + i\overline{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

(Wolfenstein parametrization の精密化)

Unitarity Triangle

標準模型の検証: すべての観測量が同一の ($\overline{\rho}, \overline{\eta}$) で説明できるか?

Unitarity triangle: 辺 • $|V_{ub}|: b \to u \,\ell \,\overline{\nu}, B^-(b\overline{u}) \to \tau \,\overline{\nu}$ $u \\ [PDG2014]$ $|V_{ub}| = (4.13 \pm 0.49) \times 10^{-3}$ (後で再考) • $|V_{td}|$: $B - \overline{B}$ 混合 u.c. $\Delta m_B \propto \left| (V_{td}^* V_{tb})^2 \right| \times F(\frac{m_t^2}{m_{w}^2}) \times \eta_{\text{QCD}} \times (ハドロン行列要素)$ $\triangleright m_{u,c} \ll m_W \lesssim m_t$ ▷ $\frac{\Delta m_B}{\Delta m_B} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \times (SU(3) \text{ breaking})$ で更に高精度

Unitarity triangle: ϕ_1 , ϕ_2

Time-dependent CP asymmetries で測る。

 $A_{CP}(f)$: direct CP asymmetry; $S_{CP}(f)$: mixing-induced CP asymmetry.

• 終状態の選び方でCKM行列要素の組み合わせが決まる。

 $\triangleright f_{CP} = \pi \pi, \ \rho \rho \quad \Rightarrow \quad \phi_2$

Unitarity triangle: ϕ_3

 $B \rightarrow D K$ direct CP asymmetry \mathfrak{F}

他の崩壊モードを使う方法もいろいろある。

Unitarity triangle: history

1995

Unitarity triangle: history

2006

第4回 日大理工・益川塾連携 素粒子物理学シンポジウム, 2014年11月8日-9日, 京都

11

Unitarity triangle

- ●標準模型でよく合っている(good news & bad news)。
 ▷新物理の余地は~10%程度。
- ε_K , Δm_B , Δm_{B_s} : ハドロン行列要素の理論誤差が主 (\Rightarrow 格子QCD)。

$b \rightarrow s$ transitions

標準模型の予言値の不定性は比較的小さい。

 $b \leftrightarrow s \ \mathsf{UT}$:

$$V_{ub}^* V_{us} \sqsubseteq V_{cb}^* V_{cs}$$

$$V_{tb}^* V_{ts}$$

第4回 日大理工・益川塾連携 素粒子物理学シンポジウム, 2014年11月8日-9日, 京都

13

$$b o s \, \ell^+ \, \ell^-$$

有効ハミルトニアン $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i(\mu) \mathcal{O}_i(\mu), \qquad C_i : \text{Wilson 係数}$

標準模型での主要項:

- 新物理: $(\bar{s}P_Lb)(\bar{\ell}\ell)$, $(\bar{s}P_Lb)(\bar{\ell}\gamma_5\ell)$, ...
- $\mathcal{O}_7 \Rightarrow b \to s \gamma$.
- $\mathcal{O}_{10} \Rightarrow B_s \to \ell^+ \ell^-.$

 $B_s o \mu^+ \mu^-$

B = (3.1 ± 0.7) × 10⁻⁹ [PDG2014 = LHCb + CMS + CDF]
 ▷ "First evidence": [LHCb, arXiv:1211.2674]

標準模型 [Bobeth, arXiv:1405.4907, Buras et al., arXiv:1208.0934]:

$$B_{SM} = \frac{G_F^2}{\pi} \left[\frac{\alpha_{em}(m_Z)}{4\pi \sin^2 \theta_W} \right]^2 \tau_{B_s} f_{B_s}^2 m_{B_s} m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} |V_{tb}^* V_{ts}|^2 Y^2(x_{tW}, x_{ht}; \alpha_s)$$

= $(3.53 \pm 0.20) \times 10^{-9}$.

● 崩壊定数 f_{B_s} の不定性が主要な理論誤差(4% in B)

 $B_s
ightarrow \mu^+ \mu^-$ in SUSY

Large $\tan \beta = \langle H_2 \rangle / \langle H_1 \rangle$ CMSSM strongly constrained.

- MSSM Higgs = Type-II 2HDM at tree level (NFC).
- SUSY breaking \Rightarrow FCNC in neutral Higgs (h^0 , H^0 , A^0) interactions at loop level.

[Choudhury & Gaur, hep-ph/9810307]

$B_s ightarrow \mu^+ \, \mu^-$ in CMSSM

 $\tan \beta = 20$ [Mahmoudi *et al.*, arXiv:1401.2145]

$B_s ightarrow \mu^+ \, \mu^-$ in CMSSM

 $\tan \beta = 40$ [Mahmoudi *et al.*, arXiv:1401.2145]

$$B o K^* (o K \, \pi) \, \mu^+ \, \mu^-$$

Kinematical variables:

- q^2 : $(\ell^+\ell^-)$ invariant mass².
- θ_{ℓ} : lepton angle in $\ell^+ \ell^-$ CM frame.
- θ_K : K angle in K^* rest frame.
- ϕ : angle between $B \to K^* \ell^+ \ell^- \& K^* \to K \pi$ planes.

Differential decay rate [Descotes-Genon et al., arXiv:1303.5794]:

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_K d\cos\theta_\ell d\phi} = \frac{9}{32\pi} \left[J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + \left(J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K \right) \cos 2\theta_\ell + J_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos\phi + J_5 \sin 2\theta_K \sin\theta_\ell \cos\phi + \left(J_{6s} \sin^2\theta_K + J_{6c} \cos^2\theta_K \right) \cos\theta_\ell + J_7 \sin 2\theta_K \sin\theta_\ell \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_\ell \sin\phi + J_9 \sin^2 2\theta_K \sin^2 2\theta_\ell \sin 2\phi \right].$$

各 J_i は q^2 に依存。

$$B
ightarrow K^* (
ightarrow K \, \pi) \, \mu^+ \, \mu^-$$

• $q^2 \approx m_{J/\psi}^2$ は $B \to K^* J/\psi (\to \mu^+ \mu^-)$ が大きいので除く。 $q^2 \approx m_{\psi'}^2$ も同様。

第4回 日大理工・益川塾連携 素粒子物理学シンポジウム, 2014年11月8日-9日, 京都

20

$$A_{\mathsf{FB}} = \left(\frac{d\mathsf{\Gamma}}{dq^2}\right)^{-1} \left(\int_0^1 - \int_{-1}^0\right) d\cos\theta_\ell \frac{d^2\mathsf{\Gamma}}{dq^2 d\cos\theta_\ell} \circ$$

第4回 日大理工・益川塾連携 素粒子物理学シンポジウム, 2014年11月8日-9日, 京都

 $B \to K^* (\to K \pi) \, \mu^+ \, \mu^-$: $A_{\rm FB}$

- $A_{\text{FB}} \sim C_{10}(q^2C_9 + 2m_b^2C_7)$
 - \triangleright "C₉" and "C₇": opposite sign in SM \Rightarrow A_{FB} crosses zero.
 - \triangleright Hadronic uncertainty of zero-crossing point q_0^2 small.
 - ▷ LHCb observed the zero-crossing: $q_0^2 = 4.9 \pm 0.9$ GeV².

[LHCb-CONF-2012-008]

$$B
ightarrow K^* (
ightarrow K \pi) \, \mu^+ \, \mu^-$$
: $A_{
m FB}$

Zero-crossing of A_{FB} kills the possibility $C_7 = C_7^{\text{SM}} + C_7^{\text{NP}} = -C_7^{\text{SM}}$ (occurs in certain parameter region in mSUGRA).

[Goto et al., hep-ph/9609512]

 $B
ightarrow K^* (
ightarrow K \, \pi) \, \mu^+ \, \mu^-$

• 3.7 σ "anomaly" in $P_5' \propto J_5(q^2)$.

[LHCb, arXiv:1308.1707]

 $B \to K \, \mu^+ \, \mu^-$

- Discrepancy in low q^2 ?
- $c\overline{c}$ resonances observed in high q^2 region.

▷ ψ (3770), ψ (4040) ψ (4140)

Wilson coefficients fit with $b \rightarrow s \, \mu^+ \, \mu^-$ and $b \rightarrow s \, \gamma$ observables

[Descotes-Genon et al., arXiv:1307.5683]

• New Physics or SM higher order corrections?

Semileptonic decays

• Exclusive: $B \to D \,\ell \,\overline{\nu}, \ B \to D^* \,\ell \,\overline{\nu}$

$$|V_{cb}| = (39.5 \pm 0.8) \times 10^{-3}$$

• Inclusive:
$$B \to X_c \,\ell \,\overline{\nu}$$

$$|V_{cb}| = (42.4 \pm 0.9) \times 10^{-3}$$

▷ ずれている?

▷ Unitarity triangle fit では平均を取ったが?

Semileptonic decays

• Exclusive: $B \to \pi \, \ell \, \overline{\nu}$, $B \to \rho \, \ell \, \overline{\nu}$

$$|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$$

• Inclusive:
$$B \to X_u \,\ell \,\overline{\nu}$$

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}$$

Semileptonic decays

 $|V_{cb}|_{\text{exclusive}} \stackrel{?}{\neq} |V_{cb}|_{\text{inclusive}}, \quad |V_{ub}|_{\text{exclusive}} \stackrel{?}{\neq} |V_{ub}|_{\text{inclusive}}$

- QCD/ハドロン物理由来?
- •新物理?

 $|V_{ub}|$ 新物理解釈の例 [Enomoto & Tanaka, arXiv:1411.1177]

• $b \rightarrow u$ right-handed current を追加 $|V_{ub}|_{\pi\ell\nu} = |V_{ub}^L + V_{ub}^R|,$ $|V_{ub}|_{incl} = \sqrt{|V_{ub}^L|^2 + |V_{ub}^R|^2}.$

Semileptonic decays: $R(D^{(*)})$

$$R(D^{(*)}) = \frac{\mathsf{B}(B \to D^{(*)} \tau \nu)}{\mathsf{B}(B \to D^{(*)} \ell \nu)} \qquad \ell = e, \, \mu$$

V_{cb} に依存しない。

• Form factor 由来の不定性は小さい。

 $R(D)_{SM} = 0.297 \pm 0.017$, $R(D^*)_{SM} = 0.252 \pm 0.003$.

 $R(D)_{exp} = 0.440 \pm 0.058 \pm 0.042$, $R(D^*)_{exp} = 0.332 \pm 0.024 \pm 0.018$. [BaBar, arXiv:1205.5442] 合わせて 3.4σ の不一致。

Semileptonic decays: $R(D^{(*)})$

Type-II two Higgs double model:

赤 理論値(type-II 2HDM) 青 実験値

[BaBar, arXiv:1205.5442]

- 両方同時には合わない。
- Belle の解析はまだ ("will appear soon")。
- 新物理解釈(レプトクォーク模型)[Sakaki et al., arXiv:1309.0301]

Summary

- B(フレイバー)の物理は新物理の間接探索。
- B ファクトリー/LHC実験で多くの測定結果が得られた。
- 実験結果は標準模型(CKM)とよく合っている。

▷ 概ね ~ 10% 程度の精度。

- $3\sigma \nu < \nu \sigma$ "anomalies" も見つかっている。
 - ▷ より高精度の測定(Belle II, LHC)に期待。
 - ▷ 標準模型の高精度計算も重要(QCD/ハドロンの不定性を減らす)。

⇒~1% レベルの高精度検証へ。