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1-1. Introduction
• Twistor theory was proposed by Penrose in 1967 and has been developed

with the aim of finding a unified framework for

space-time, gravity, elementary particles, quantum physics.

• Although twistor theory has provided many interesting ideas, it cannot be

said that Penrose’s ambitious plan of finding a unified framework has

achieved success.

• From a mathematical viewpoint, twistor theory can be regarded as a skillful

tool for solving

anti-self-dual YM equation, Bogomolny equation, etc.

• Relatively recently, a new method for calculating gluon scattering

amplitudes in QCD has been studied based on twistor string theory

(E. Witten, CMP 252 (2004) 189; R. Boels et al., PLB 648 (2007) 90).



• In 1983, Shirafuji presented a model of massless spinning particles

formulated in terms of twistors.

• Since then, various generalizations of this model have been proposed until

recently. For example,

– D = 6 massless particle model (I. Bengtsson and M. Cederwall, NPB

(1988) 81),

– Tensorial space-time model (I. Bandos and J. Lukierski, MPLA (1999)

1257),

– Massive particle models (S. Fedoruk et al, IJMPA 21 (2006) 4137; S.

Fedoruk and J. Lukierski, PLB 733 (2014) 309).

F In this talk, we shall consider gauging of the Shirafuji model and its

generalization to massive particles.



1-2. A definition of twistor
• The bispinor notation pαα̇ and the 4-vector notation pµ are related by(

p00̇ p01̇

p10̇ p11̇

)
=

1√
2

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
.

• A twistor ZA is defined as a pair of two bosonic Weyl spinors:

ZA ≡ (ωα, πα̇) , A = 0, 1, 2, 3, α = 0, 1, α̇ = 0̇, 1̇ .

πα̇ : Weyl spinor specifying a light-like vector,

pαα̇ = π̄απα̇ ⇐⇒ pαα̇p
αα̇ = 0 　(πα̇π

α̇ = 0 ).

ωα : Weyl spinor defined by ωα = izαα̇πα̇ .

Here, zαα̇ are coordinates of a point in the complexified Minkowski space:

zαα̇ = xαα̇ + iyαα̇,

where xαα̇ denote a point in the ordinary Minkowski space.



2-1. Twistor formulation of massless particles

• In 1983, Shirafuji gave an action for a massless spinning particle in

Minkowski space (T. Shirafuji, PTP 70 (1983) 18):

S0 =

∫
dτ

[
iZ̄A

d

dτ
ZA

]
,

where ZA = ZA(τ) is a twistor depending on the world line parameter τ ,

and Z̄A = Z̄A(τ) its dual twistor.

F S0 remains invariant under the global U(1) transformation

ZA → eiθZA , Z̄A → e−iθZ̄A ( θ : constant real parameter ).

F S0 can be expressed as

S0 =

∫
dτ

[
−π̄απα̇

dxαα̇

dτ︸ ︷︷ ︸
orbital part

−iyαα̇
(
π̄α
dπα̇

dτ
− πα̇

dπ̄α

dτ

)
︸ ︷︷ ︸

spin part

]
.



• To see that S0 actually describes a massless spinning particle, it is

convenient to consider the Pauli-Lubanski spin (pseudo)vector

Wµ =
1

2
εµνρσPνMρσ =⇒ Wµ = sPµ (massless particles)

Pν : 4-momentum vector, Mρσ : angular-momentum tensor, s : helicity.

In the Shirafuji model, s is determined to be

s =
1

2
Z̄AZ

A = −yαα̇π̄απα̇ .

• The canonical momentum conjugate to ZA is

δS0

δŻA
= iZ̄A

(
· =

d

dτ

)
.

Hence, Z̄A is treated as a momentum variable, while ZA is a coordinate

variable.



• The canonical quantization is carried out by replacing ZA and Z̄A with the

corresponding operators ẐA and ˆ̄ZA. The commutation relations are found

to be [
ẐA, ˆ̄ZB

]
= δA

B ,
[
ẐA, ẐB

]
=

[ ˆ̄ZA,
ˆ̄ZB

]
= 0 .

Then, ẐA and ˆ̄ZA can be represented as ẐA = ZA, ˆ̄ZA = − ∂

∂ZA
.

(R. Penrose, IJTP 1 (1968) 61; S.D. and J. Note, JMP 54 (2013) 072304.)

• The Weyl-ordered helicity operator is given by ŝ =
1

4

(
ˆ̄ZAẐ

A + ẐA ˆ̄ZA

)
.

The helicity eigenvalue equation ŝf = sf becomes

−1

2

(
ZA ∂

∂ZA
+ 2

)
f(Z) = sf(Z) , f(Z) : twistor wave function.

This is valid for any homogeneous function f of degree −2s− 2. This degree

must be an integer so that f can be single-valued; hence, s =
n

2
(n ∈ Z).



• We can construct massless spinor fields of higher-rank by the Penrose

transform of f(Z).

1. Positive helicity fields: s =
n

2
(n ∈ N) [ Penrose 1969 ]

Ψα̇1α̇2···α̇n(z) =
1

2πi

∮
Γz

πα̇1πα̇2 · · ·πα̇nf(Z)πβ̇dπ
β̇ .

Here, Γz denotes a contour on a Riemannian surface CP1 parametrized

by a pair of π1̇/π0̇ and π0̇/π1̇.

2. Negative helicity fields: s = −n
2

(n ∈ N) [ Hughston 1973 ]

Ψα1α2···αn(z) =
1

2πi

∮
Γz

∂

∂ωα1

∂

∂ωα2
· · · ∂

∂ωαn
f(Z)πβ̇dπ

β̇ .

We can show that the spinor fields satisfy the generalized Weyl equations

∂ββ̇Ψβ̇α̇2···α̇n
= 0 , ∂ββ̇Ψβα2···αn = 0 .



2-2. A gauged twistor model of massless particles

• Now we carry out gauging of the global U(1) transformation of twistors,

introducing a U(1) gauge field a = a(τ) on the world line. (I. Bars and M.

Picón, PRD 73 (2006) 064002; S.D., T. Egami and J. Note, PTP 124 (2010)

969.) The local U(1) transformation is

ZA → eiθ(τ)ZA , Z̄A → e−iθ(τ)Z̄A , a→ a+
dθ(τ)

dt
.

F Replace
d

dτ
in S0 by the covariant derivative D =

d

dτ
− ia .

F Add the 1-dim. CS term SCS = −2s
∫
dτa to the gauged action.

In this way, we have

S̃0 =

∫
dτ

[
iZ̄ADZ

A − 2sa
]

=

∫
dτ

[
iZ̄A

d

dτ
ZA + a

(
Z̄AZ

A − 2s
)]
.



F The EL equation
δS̃0

δa
= 0 leads to the helicity condition

1

2
Z̄AZ

A = s.

This fact implies that S̃0 governs a massless spinning particle with a fixed

value s of helicity.

F The CS coefficient s is quantized in connection with the quantization of

twistor.

• Remarkably, S̃0 is equivalent to the action of the model so-called massless

particle with rigidity (S.D. and T. Suzuki, PLB 731 (2014) 337):

Srp = −|s|
∫
dτ

√
−ẋ

√
ẋ2ẍ2 − (ẋẍ)2

(−ẋ2)3︸ ︷︷ ︸
extrinsic curvature of the particle world line

where ẋ2 := ẋµẋ
µ, ẍ2 := ẍµẍ

µ, ẋẍ := ẋµẍ
µ.

This model describes a classical analog of the Zitterbewegung of a massless

spinning particle (M.S. Plyushchay, PLB 243 (1990) 383).



3-1. Twistor formulation of massive particles

• To describe a massive particle in terms of twistors, we need to introduce

more than two twistors [ Penrose 1975, Perjés 1975, Hughston 1979 ] :

ZA
i ≡ (ωα

i , πiα̇) , i = 1, 2, . . . N, A = 0, 1, 2, 3,

with the condition

ωα
i = izαα̇πiα̇

(
zαα̇ = xαα̇ + iyαα̇

)
Hereafter, we consider the case N = 2. (The cases of N ≥ 3 turn out to be

trivial in the specific model that we consider.)

• The 4-momentum of a massive particle is expressed as

pαα̇ := π̄1
απ1α̇ + π̄2

απ2α̇ = π̄i
απiα̇ , i = 1, 2.

Then,

pαα̇p
αα̇ =

∣∣π1α̇π
α̇
1

∣∣2︸ ︷︷ ︸
=0

+
∣∣π2α̇π

α̇
2

∣∣2︸ ︷︷ ︸
=0

+2
∣∣π1α̇π

α̇
2

∣∣2 = 2
∣∣π1α̇π

α̇
2

∣∣2 6= 0 ,

( iff π1α̇ 6= cπ2α̇ , c ∈ C ).



• The mass-shell condition pαα̇p
αα̇ = m2 can be written as

2
∣∣π1α̇π

α̇
2

∣∣2 −m2 = 0 ,

which is equivalent to

εijπiα̇π
α̇
j −

√
2meiϕ = 0 , εij π̄

i
απ̄

jα −
√

2me−iϕ = 0

(S. Fedoruk and J. Lukierski, PLB 733 (2014) 309)

Here, ϕ is a real parameter.

• We adopt FL’s complex mass-shell condition. Then the Shirafuji action S0

can naively be generalized for massive particles:

Sm =

∫
dτ

[
iZ̄i

A
d

dτ
ZA

i +h
(
εijπiα̇π

α̇
j −

√
2meiϕ

)
+ h̄

(
εij π̄

i
απ̄

jα−
√

2me−iϕ
)]
,

where h is a complex Lagrange multiplier.



The action Sm remains invariant under

1. Global U(1) transformation:

ZA
i → eiθZA

i , Z̄i
A → e−iθZ̄i

A, h→ e−2iθh , h̄→ e2iθh̄ ,

ϕ→ ϕ+ 2θ .
( θ : constant real parameter )

2. Global SU(2) transformation:

ZA
i → Ui

jZA
j , Z̄i

A → Z̄j
AU

†
j
i, πiα̇ → Ui

jπjα̇, π̄i
α → π̄j

αU
†
j
i,

h, h̄, and ϕ do not change.

(U ∈ SU(2) : constant matrix )

• Unlike the earlier twistor models of massive particles, we systematically

derive appropriate constraints by gauging the global U(1) and SU(2)

transformations, as will be seen later.



3-2. Gauged twistor models of massive particles

• Now we carry out gauging of the global U(1) and SU(2) transformations:

θ ⇒ θ(τ) , U ⇒ U(τ) .

F We introduce a U(1) gauge field a = a(τ) and a SU(2) gauge field

b = b(τ) =
∑3

r=1
br(τ)σr [σr: Pauli matrices ], which obey the gauge

transformation rules

a→ a+
dθ

dt
, b→ UbU† − i

dU

dt
U† .

F Replace
d

dτ
in Sm by Di

j = δi
j d

dτ
− iδi

ja− ibrσri
j .

F Add the 1-dim. CS term for a, SCS = −2s
∫
dτa, to the gauged action.

Note that the 1-dim. CS term for b vanishes: S′
CS = −2t

∫
dτ Tr b︸︷︷︸

=0

= 0 .



In this way, we have

S̃m =

∫
dτ

[
iZ̄i

ADi
jZA

j − 2sa

+ h
(
εijπiα̇π

α̇
j −

√
2meiϕ

)
+ h̄

(
εij π̄

i
απ̄

jα−
√

2me−iϕ
)]
,

=

∫
dτ

[
iZ̄i

A
d

dτ
ZA

i + a
(
Z̄i

AZ
A
i − 2s

)
+ brZ̄

i
Aσri

jZA
j

+ h
(
εijπiα̇π

α̇
j −

√
2meiϕ

)
+ h̄

(
εij π̄

i
απ̄

jα−
√

2me−iϕ
)]
.

F The EL equation
δS̃m

δa
= 0 gives

1

2
Z̄i

AZ
A
i = s, while

δS̃m

δbr
= 0 gives

Z̄i
Aσri

jZA
j = 0 ( r = 1, 2, 3 ) .

It eventually turns out that this set of constraints is too strong and allows

only spinless fields. Therefore we need to modify the model to involve

spinfull fields.



• To construct a modified model, we consider the non-linear realization of

SU(2) by introducing the coset space SU(2)/U(1). Coset representative

elements V (ξ, ξ̄ ) (V ∈ SU(2), ξ(τ) ∈ C) are chosen from each left coset of

U(1)[⊂ SU(2)]. The V obeys the transformation rule

V (ξ, ξ̄ ) → V (ξ′, ξ̄′) = U(τ)V (ξ, ξ̄ )e−iϑ(τ)σ3 ,

where ϑ(τ) is a real parameter of the U(1) transformation generated by σ3,

which is hereafter denoted by Ũ(1).

• Now we define the modified action

S =

∫
dτ

[
iZ̄i

ADi
jZA

j − 2sa− 2t
(
brVr

3 − ξ̇eξ
3 − ˙̄ξeξ̄

3
)
− k

√
2gξξ̄DξDξ̄

+ h
(
εijπiα̇π

α̇
j −

√
2meiϕ

)
+ h̄

(
εij π̄

i
απ̄

jα−
√

2me−iϕ
)]
,

where Vr
3, eξ

3, eξ̄
3, and gξξ̄ are constructed from V , while s, t, and k(> 0)

are constants.



The action S remains invariant under 　　
1. the local U(1) transformation,

2. the local SU(2) transformation,

3. the reparametrization τ → τ ′.

• In the particular gauge ξ(τ) = ξ0 such that V (ξ0, ξ̄0) = 1, the action S

takes a simpler form

S =

∫
dτ

[
iZ̄i

A
d

dτ
ZA

i + a
(
Z̄i

AZ
A
i − 2s

)
+ b3

(
Z̄j

Aσ3j
kZA

k − 2t
)

+ biZ̄
j
Aσij

kZA
k − k

√
bibi

+ h
(
εijπiα̇π

α̇
j −

√
2meiϕ

)
+ h̄

(
εij π̄

i
απ̄

jα−
√

2me−iϕ
)]
.

In this form, the local SU(2) symmetry hides, while the local Ũ(1) symmetry

is realized in addition to the local U(1) symmetry.



• The EL equations for a, b3, bi, h, h̄, and ϕ are
T0 − s = 0 , T3 − t = 0 , Ti −

kbi

2
√
bjbj

= 0 (i = 1, 2) ,

εijπiα̇π
α̇
j −

√
2meiϕ = 0 , εij π̄

i
απ̄

jα−
√

2me−iϕ = 0 , heiϕ − h̄e−iϕ = 0 ,

where
T0 :=

1

2
Z̄i

AZ
A
i , Tr :=

1

2
Z̄j

Aσrj
kZA

k (r = 1, 2, 3).

These equations are also derived as the secondary constraints in the

canonical formulation based on the action S. The third constraint gives

TiTi −
k2

4
= 0 .

The Dirac brackets of the twistors are found to be{
ZA

i , Z̄
j
B

}
D

= −iδj
i δ

A
B ,

{
ZA

i , Z
B
j

}
D

=
{
Z̄i

A, Z̄
j
B

}
D

= 0 .



3-3. Canonical quantization of the model

• Quantization of the model is performed with the commutation relations[
ẐA

i ,
ˆ̄Zj

B

]
= δj

i δ
A
B ,

[
ẐA

i , Ẑ
B
j

]
=

[ ˆ̄Zi
A,

ˆ̄Zj
B

]
= 0 .

The operators T̂0 := 1
4

( ˆ̄Zi
AẐ

A
i + ẐA

i
ˆ̄Zi

A

)
and T̂r := 1

2
ˆ̄Zj

Aσrj
kẐA

k satisfy[
T̂0, T̂r

]
= 0 ,

[
T̂p, T̂q

]
= iεpqrT̂r .

• We now take the representation ẐA
i = ZA

i , ˆ̄Zi
A = − ∂

∂ZA
i

. The above

mentioned (first-class) constraints are read as the eigenvalue equations
(
T̂0 − s

)
f(Z) = 0 ,

(
T̂3 − t

)
f(Z) = 0 ,

(
T̂iT̂i −

k2

4

)
f(Z) = 0 ,

(
εijπiα̇π

α̇
j −

√
2meiϕ

)
f(Z) = 0 ,

(
εij

∂2

∂ωα
i ∂ωjα

−
√

2me−iϕ

)
f(Z) = 0 ,

(The constraint heiϕ − h̄e−iϕ = 0 is classified as a second-class constraint.)



• The single-valuedness of f(Z) restricts the possible values of s and t to

s =
ns

2
, t =

nt

2
(ns, nt ∈ Z).

By using the eigenvalue equation for the Casimir operator of SU(2)

T̂rT̂rf(Z) = j(j + 1)f(Z)
(
j = 0,

1

2
, 1,

3

2
, . . .

)
,

the possible values of k are determined to be

k = 2
√
j(j + 1) − t2 ( t = −j, −j + 1, . . . , j − 1, j ).

In this way, k as well as the CS coefficients s and t is quantized. The twistor

function f(Z) is characterized by the quantum numbers (s, j, t), so that it

can be denoted as fs,j,t(Z).



• We can construct massive spinor fields of higher-rank by the (generalized)

Penrose transform of the homogeneous function f(Z) of degree −2s− 4:

Ψ i1...im
α1...αm;j1...jn, α̇1...α̇n

=
1

(2πi)2

∮
Σz

πj1α̇1 · · ·πjnα̇n

∂

∂ωα1
i1

· · · ∂

∂ωαm
im

f(Z)

× π1β̇dπ
β̇
1 ∧ π2γ̇dπ

γ̇
2 .

Here, s = (n−m)/2 (m,n ∈ N0), and Σz denotes a 2-dimensional

contour. Using the mass-shell conditions at the quantum level, we can show

that this spinor field satisfies the generalized Dirac equations

i∂ββ̇Ψ i1...im

α1...αm;j1...jn, β̇α̇2...α̇n
+

m√
2
eiϕεβγεj1kΨ

ki1...im
γα1...αm;j2...jn, α̇2...α̇n

= 0 .

i∂ββ̇Ψ i1...im
βα2...αm;j1...jn, α̇1...α̇n

+
m√
2
e−iϕεβ̇γ̇εi1kΨ i2...im

α2...αm;kj1...jn, γ̇α̇1...α̇n
= 0 .



• In the simplest cases (m,n) = (0, 1) and (n,m) = (1, 0). the above

equations become

√
2i∂αα̇ε

ijΨ α̇
j −mΨ i

α = 0 ,
√

2i∂αα̇Ψ i
α −mεijΨ α̇

j = 0 .

These equations can be arranged in the form of the ordinary Dirac equation:

(iγµ∂µ −m)ψ = 0 , (iγµ∂µ −m)ψc = 0 ,

where

ψ =

(
Ψ1

α

Ψ α̇
2

)
s = − 1

2

s = 1
2

, ψc =

(
Ψ2

α

Ψ α̇
1

)
s = − 1

2

s = 1
2

.

t = − 1
2

t = 1
2

We see that s is a quantum number for chirality, while t is a quantum

number for characterizing particles and anti-particles.



4-1. Summary

• We have found the gauged Shirafuji model of a massless spinning particle by

considering the local U(1) transformation of twistors.

– The gauged model describes a massless spinning particle with a fixed

value of helicity.

– This model is equivalent to the model of a massless particle with rigidity.

• We have constructed a gauged twistor model of massive spinning particles

by considering the local U(1) and SU(2) transformations of twistors.

– A non-linear realization of SU(2) has been incorporated in the model so

as to be able to treat massive spinfull fields.

– Appropriate constraints have been derived in a systematic manner by

virtue of gauging the U(1) and SU(2) symmetries.

– Higher-rank massive spinor fields (with SU(2) indices) have been obtained

by the (generalized) Penrose transform.



4-2. Future issues

• Consider coupling to external electromagnetic and gravitational fields.

• Compare to the Barut-Zanghi model, another massive spinning particle

model involving coupling of an external electromagnetic field.


