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1 Introduction

Cosmological Constant Problem:

Higgs Condensation ~ (100 GeV )*
QCD Chiral Condensation ~ (100 MeV )* (1)

These seem not contributing to the Cosmological Constant!
—> Massive Gravity: an idea toward resolving it
However, Massive Gravity has its own problems:

e van Dam-Veltman-Zakharov (vDVZ) discontinuity

Its m — 0 limit does not coincides with the Einstein gravity.

e Boulware-Deser ghost

J0—  (1+3) = 6 = O + (2)
huv N—hg, Niehg, massive spin2  BD ghost

We focus on the BD ghost problem here.
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In addition, we believe that any theory should eventually be made super-
symmetric, that is, Supergravity (SUGRA).

This may be of help also for the problem that the dRGT massive gravity
allows no stable homogeneous isotropic universe solution.

In this talk, we

1. explain the dRGT theory

2. massive supergravity

2 Fierz-Pauli massive gravity (linearized)

Einstein-Hilbert action

Lry=+v—gR (3)

£ [£on] I, -]

7/

. . +
quadratic part in hy, 1 4

"~

— = 1)

v = Ny -+ h;w (5>
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In Fierz-Pauli theory with a = 1, there are only 5 modes describing properly
massive spin 2 particle.

") No time derivative appears for hgg, ho; in Lgg — Lgy is linear in N, N;.
[t a =1, the mass term L5 is also clearly linear in N ~ hgo !

—

e /V; can be solved algebraically and be eliminated.

e N c.om. % = () gives 1 constraint on other fields since S' is linear in N
so that
J0,— 3 _—(_ 1 _+ ,1,. ) =25 (6)
o N; N constraint

Nonlinear completion of this theory was proposed by
dRGT: de Rham-Gabadadze-Tolley, Phys. Rev. Lett. 106 (2011)
which is claimed to be free of BD ghost on arbitrary background and to

connect smoothly to Einstein gravity as m — 0 by Vainshtein mechanism.
They use the Stiickelberg field formalism by AHGS.
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3 Arkani-Hamed-Georgi-Schwartz : Stiickelberg for-

malism

Ann. Phys. 305 (2003) 96; the work preceding to dRGT.

AHGS have rewritten the Fierz-Pauli theory into GC invariant form: GC
invariance is realized as a Fake Symmetry, or Hidden Local Symmetry.

The simplest case is the "two site model”, in which case easiest way to
understand is to regard it as "space-time filling d-brane” in D = d + 1

dimensional target space-time.

Target Space : X with metric Gun(X) =nun

brane (world sheet) : 2/ with metric g, (z) (7)

Embedding function
XM =Y¥(x) (8)

Induced metric on the brane

fun(x) = 0,YY(x) - nuw - 0,V () (9)




From world sheet viewpoint,

Y™ (x) : D scalar functions
then, = f,,(x) : GC tensor (10)
GC-invariant form of FP theory by AHGS:
Lancs = »CEHQ‘" LAncs
ATICS = —%Jfgg“”gaﬁ (HyaHys — allyy Hop) (11)
where

Hyw = 9w — fuw
= g — 0" g - 0¥ (12)
is a GC tensor and the AHGS lagrangian L£apcs is clearly GC invariant.

This is achieved by the introduction of the mapping function ¥/ (x) which
is analogous to ¢ (z) from deconstruction point of view.

YM(:U) = M 524 + (/ﬁM(a:) (13)
dM =0 : “Unitary Gauge” (or, “static gauge” from brane viewpoint)

= 0, YY(2) = (5% —  fw(r) =1, (14)



This mass term reduces to L3> at linearized level.

We can see more explicitly the absence of BD-ghost in this AHGS formu-
lation of massive gravity on flat background g,, = 1,..
Generally, before fixing gauge,

fw/ — GMYMUMN()’VYN — Nuw + au¢,/(.’17) + (%gbu(x) + 6M¢M : 8V¢M($)

Introduce a Stiickelberg Vector A, and scalar field 7 by writing

Pu(2) = — A, (x) — —

m m?

Oum(z)

Then, clearly this system is invariant under the GC and additional U(1)
gauge transformation independently of a value:

Shyy = 0,8, + 0,0, 6A, =m&u+ 0\, dm=mA (15

For the Fierz-Pauli value a = 1, we can quantize the system as usual based

on the BRS symmetry:.



Counting of physical degrees of freedom:

+4+1-(4 + 4 )-(1L+1)=5 ! (16)
gWJr‘ngw GCghog’%:cm—Eu U(l)g}:orsts:ché

Note that U(1) gauge invariance was a fake gauge symmetry which was
brought into the system by introducing the Stiickelberg scalar .
But it gave subtracting 2 modes ¢ + ¢.

Isn't this STRANGE 7
The point is that usually

H,, D 0,0, D au(?ﬂTHiy —aH*D (1—a)or-on

That is, When a # 1 there appears Higher Derivative Term so that the
single field 7 actually contains (1+1)-modes! (one of them is of negative
metric = BD ghost).

So the problem is boiled down to confirm that the absence of higher deriva-
tive term for m.

AHGS model (Fierz-Pauli at linearlized level on flat background) con tains
BD ghost apart from the flat background!
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4 “Ghost-free” massive gravity of de Rham-(Gabadadze-

Tolley
PRL 106 (2011)

m2
L = Lgg — Z\/ —g U(guw H,LW) |

dRGT have given their mass term U as follows:
Noting

<g_1H)MV — gu/\<g/\u — f)xl/) — 5'uu — (g_lf)”y (17)
they define a tensor K, by

K" =68 — /(g7 1f) (18)

1% 1%

Define a generating function

det(", + AK",) = (1/4)e"eq,5(8 + K),* (8 + K),/ (6 + K), (0 + K),
= 1+ N\UW(K) + XUP(K) 4+ PUY(K) + MUY(K)



giving U(K) (n =1,2,3,4)
UMN(K) = €0 K", = 3| [K]
UP(K) = 5Wp050‘5p"[(“a[(”5
=2 ([K*] = [KJ)) — Fierz-Pauli
UYN(K) = EuvpagaﬁwKMaKyﬁva
afBvo v o
UNK) = epoe® K" K K" K

Then the dRGT mass term is given:

VU9, 1) = =5 (20K + U (K) + 0 1) |

minimal model a3 = ay = 0.

10

(19)



11

Focusing only the Stiickelberg scalar 7 on the flat background g,, = 1.,

decoupling limit,

¢u(5€) = Au<37) + a/ﬂr(x) = ¢u(5€) = _aMT(fE)
= Mo, (x) = 0"0,m(x) =117, (20)

g f = f=1+0"0¢)+n (9¢)" +n " (0d)n (0¢)"
=1+ 2l + 117 = (1 +11)° (21)

so that, in decoupling limit,
K=+g'f—-1—=1I",=0"0,n(x) (22)

these UM(IT) (n = 1,2,3,4) give total derivative. No higher derivatives
appear.
Generating function of general mass term:

V=9Ul(g, H) = v/—gdet(1 + A\V/g~'f) (23)
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5 Massive Supergravity

5.1 dRGT massive gravity theory can be obtained by dimensional reduction d =5 — 4

dRGT have shown that the 2 site model of 5d Einstein theory, written in
terms of vierbein discretized on 2 points 41 and 7, on 5-th dimension, yields
after fixing all the 5d gauge symmetries

/5abcd (RPN €S Ael +mPler —e)" Aler —ex)’ Aef Ael)) + (1« 2)
(24)

If both fields e; = e and e; = f on y; and y, are taken as dynamical —
bigravity.

It the field ey, = f; on yo are fixed to, e.g., [ = d;, then dRGT massive
gravity for ef | = e,

/5abcdm2(e — )N (e — f)b A eS N ed)

%/dzlx\/—ngU(z)(K) —/d4x —gm225f255]K’”‘aK”b (25)
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Performing the similar thing on 2site model of 5d SUGRA is naively ex-
pected to yield a SUSY version of the massive gravity, massive SUGRA.
Unfortunately, however, we were not yet able to get massive SUGRA, since
the SUSY is fragil against discretization.

But in any case, it gives us strong clue for the possible massive SUGRA.

so consider the KK reduction of d = 5 SUGRA, which consists of the fields

eni(z,y), Yi(z,y), Aulz,y),  (i=1,2:SU(2) label)  (26)

5.2 Kaluza-Klein counting

Consider 5d SUGRA on M, x S, and expansion into KK modes:

1

7 (27)

o(x, y) =Y pul@)e™ m

nes
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comp. gauge tris n=>0 n=%+1, £2 ...

a

e, o€l = 0u&(, massless (j =2)2  massive (j =2)5=2+2+1

/I\
€, 5€i(n) = M&Eln) massless B, (j = 1) 2 NG (j=1)2
ey : 562@) = inmﬁgn) 0 by LL gauge 0 by LL gauge
/]\
e‘yL : 563(n) — inmg?m massless ¢ (j =0) 1 NG (j=0)1

Ay 0Am =004 massless GB (j=1)2  massive (j =1)3=2+1

/I\

Ay 0A,q) =inmby,)  massless (j =0) 1 NG (j=0)1

V! 5@%(”) = (9M€én) massless GF (j = 3/2) 2 massive (j =3/2) 4 =2+ 2
T

v &D;(n) = inmsén) massless (j =1/2) 2 NG fermion (j =1/2) 2

(28)
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n = 0 sector is identical with N = 2 d = 4 SUGRA, obtained by trivial
reduction.
The massive towers with n = %1, &2, - -- for each n look like

N = 1 massive multiplet 1ej,,,, + 2 wz(n) +1A,m) (29)

which actually gives N = 2 massive multiplets for each n with central charge
m = Z = p*. But note that they are complex; 90](Ln) = O(=n)-

Clearly, at the linearlized level, those KK modes ¢, close within any pair
+|n| and —|n| for any n under the y = z*-independent SUSY transfor-
mation (,_o)(2) as well as under the inhomogeneous shift trf Oyre(,) ()
(because of py momentum conservation).

So we can truncate to n = &1 modes on flat background, or cosine and
sine real modes:

1 .
)P =Z(omy +ecn), @@ ==(eq) —¢rn), (30)

oz 5
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We can further truncate to only y-parity even modes:

GZ cos, eisin, ez cos7 63 sim7 Aibin7 AzOS <3 1)

@)
where, for 5D SU(2) Majorana spinors ¢;—1 o,
Yy = P1r + oL

V- = o — YuL, (33)

are both 4D Majorana ¢ = ¥LC
Then the SUSY invariance also reduces to

8%0) () — €y = €4 : const + . fixed to flat backgrond
5Z(i1)<5’7> — e(z) = ni(z), e2(z) =n-(2) (34)
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5.3 Linearized theory by Kaluza-Klein truncation of 5D SUGRA

Action:
With definitions
e, Ny = €, huw = e + vy = 2€(), eu = B, e? 6y4 = ¢?
h=h,, h, = 0"h,, = 2e), (35)

the Action at the linearlized level is (e,” = 0 gauge):
1
§ = 31 (0,0h = 20y + Sy + 1 (0 — oh) )

1 ~
_zF/LVZ(A> — 2 Z quﬂ/u pﬁulppi

+<";“ hy + 0, By) + aayqs) (%ma-zﬂ%mf
|

1 1
om? (A + E@Ay) + (=204m Gy — —0utbys )7 (Yo + — 0,1y )
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Transformation law: (£,: const Weyl spinor)

oe," = —2ie " (¢M+ — %@LMH) + 0,.&"

e, = 0B, = 2&,1, —mé&, + 0,&"

be,' = 0¢ = 22 ,1p, —m&"

6A, = V6z ist, + 0,0

0A, = V62 iysih,_ —mb (36)

1 ) 1 )
5¢u+ — 8u77+ _ zwu,abfy b5+ T ﬁ(v,uu - 277,uu)755+<8u14y + mA )

with Wyabh = 0 1Clab) — a[ahbu

1,1 '
Oy = miy = 7 (5Ew(B) +mepu)) v ey — ; \/7 "ys5e 4 Fap(A)
?: 1% 1 a
5%— — /ﬂ7— T 1<F/W(B) o mh/w)’y €+ — 4—\/6<7uab - 477ua’>/b> 755+F b(A)
1 1
0y = —mn_ + 5(@@ +mB,)y'ey — %(@Ay + mA*) Y yse . (37)
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5.4 Toward full super version of the dRGT theory

In the dRGT theory, the AHGS’s tickeberg field was used to recover the
GC invariance; the mapping function Y introduced by AHGS:

fi(z) = 8, () 63 uy(x) (38)

YM(z) is the coordinate in the ‘target space’, so that it must be 4 world

scalar functions.

YM(z) = x”éy + ¢M () : Stiickelberg for GC
¢.(x) = ¢"nyr, = B, + 0,1 - w(x) Stiickelberg for U(1)
u(x) : Stiickelberg for LL (39)

If Y™ is treated as a world scalar, the induced vierbein fii(x) exactly
transforms as a vierbein on the worldsheet, and so the mass term

/ngabcd (e =) Ale— )P Ane“Ne)) (40)

1s GC invariant.
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It should be possible to extend this to the SUGRA case: introduce

p
yM () target space vector

YM<£IZ) — a supermultiplet ¢ A (z)  target space spinors (41)

\0(:1:) target space scalar
as Stiickelberg fields so as to make

induced viebein : f}/(x) = 0, Y M () 64 u%y(x)

induced Rarita-Schwinger : W,1 () = 9, Axa(z) U ()
induced vector : f,(x) = 0,0(z) (42)

Then the mass term, which should be N = 2 SUGRA invariant, will take
the form

M? 1
»C'boson mass — Tpm25w/p05abcd<ez o f/il)(e?z - fyb)e,COGCUZ o §m2<AM o fM)Z

['fermion mass — m(%ﬁ o \IJ,LL—F)VMVVE)(wV— _ qjv—) <43>
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The invariance under the GC and LL transformation is clear. Non-trivial
is the SUSY.

We are at present trying to find the tull SUSY transformation rule, from
the linearlized result. But very non-trivial is the SUSY transformation rule
for the Stiickelberg fields Y, A" and u%. We infer something like

SYM = (g'47))0,Y M
SN = &'+ (8'9" NI\’
ou’y = - - (44)

which should, probably, reproduce the ‘usual’ N=2 SUGRA transformation
for the induced SUGRA multiplet [/, \IJL, Ju:

0f; = —20e'y" U,

i 1 a 7 \/6 2 a
(S\PM = (GM — EQM b(f, \Ij>’yab> € — ? (’y,uab _ g’h%b) F b(f)

0f, = V6ig" U, (45)



5.5 mode number counting
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If we succeeded in constructing this mass term invariant under the N = 2
SUGRA transformation, the mode counting after quantization a la BRST

will be the following:
Graviton sector:

o ; 10
yM { ou !
om 1
GC ghost ¢, ¢, —4 x 2
U(1) ghost ¢, ¢ —1 %2

10+4+1—-4x2+1x2)=5

(46)



23

Gravitino sector

Ups o4 X 4(p) X 2(£)
Nakanishi-Lautrup spinor  By0"t,4 : 4 X 2(+)
A4 x2
super ghosts 74, Y+ 4 X 2(4) x 2 (47)

The fields ¥+, B+, Ay all have first order derivative kinetic terms so that
the counting reads
4 x4dx244x244x%x2
2

in coincide with the d.o.f. massive spin 3/2 particle.

—4Xx2x2=4x%x2 (48)

Essential is the point that the Stiickelberg spinor A4 has only first order
derivative kinetic term despite it appears in the derivative form W, = 0, A+

in the mass term:

£fermionmass — m(&pﬁ o qj,u+>7'uy<¢l/— o qu—) <49)

It is guaranteed by the antisymmetry property of v*¥.



24

This might be thought to be automatic by the balance between boson and
fermion mode numbers in SUSY theory. But it is not so because N = 2
SUSY are spontaneously broken (non-linearly realized) here, where \* are
the Goldstinos.



